Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells.

نویسندگان

  • A Kazantsev
  • E Preisinger
  • A Dranovsky
  • D Goldgaber
  • D Housman
چکیده

Pathological degeneration of neurons in Huntington's disease and associated neurodegenerative disorders is directly correlated with the expansion of CAG repeats encoding polyglutamines of extended length. The physical properties of extended polyglutamines and the intracellular consequences of expression of polyglutamine expansion have been the object of intensive investigation. We have extended the range of lengths of polyglutamine produced by recombinant DNA methodology by constructing a library of CAG/CAA repeats coding for a range of 25-300 glutamine residues. We have investigated the subcellular localization, interaction with other polyglutamine-containing polypeptides, and the physical properties of aggregated forms of polyglutamine in the cell. Extended polyQ aggregated in the cytoplasm and was only transported to the nucleus when a strong nuclear localization signal was present. Polyglutamine below pathological lengths could be captured in aggregates and transported to ectopic cell locations. The CREB-binding protein (CBP), containing a homopolymeric stretch of 19 glutamines, was likewise found to coaggregate in a polyglutamine-dependent manner, suggesting that pathology in polyglutamine disease may result from cellular depletion of normal proteins containing polyglutamine. We have observed a striking detergent resistance in aggregates produced from polyglutamine of pathological length. This observation has led to the development of a fluorescence-based assay exploiting the detergent resistance of polyglutamine aggregates that should facilitate high-throughput screening for agents that suppress polyglutamine aggregation in cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular clearance of ataxin-3 is regulated by a mammalian E4.

Insoluble aggregates of polyglutamine-containing proteins are usually conjugated with ubiquitin in neurons of individuals with polyglutamine diseases. We now show that ataxin-3, in which the abnormal expansion of a polyglutamine tract is responsible for spinocerebellar ataxia type 3 (SCA3), undergoes ubiquitylation and degradation by the proteasome. Mammalian E4B (UFD2a), a ubiquitin chain asse...

متن کامل

Evidence for a recruitment and sequestration mechanism in Huntington's disease.

Polyglutamine (polyQ) extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyQ aggregates in Huntington's disease. We constructed an array of CAG/CAA triplet repeats, coding for a range of 25-300 glutamine residues, which was used to generate expression constructs with minimal flanking sequence. Normal-length (25 glutami...

متن کامل

In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence.

Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRA...

متن کامل

Oligomeric and polymeric aggregates formed by proteins containing expanded polyglutamine.

Neurological diseases resulting from proteins containing expanded polyglutamine (polyQ) are characteristically associated with insoluble neuronal inclusions, usually intranuclear, and neuronal death. We describe here oligomeric and polymeric aggregates formed in cells by expanded polyQ. These aggregates are not dissociated by concentrated formic acid, an extremely effective solvent for otherwis...

متن کامل

Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment.

Huntington's disease is caused by the expansion of CAG repeats coding for a polyglutamine tract in the huntingtin protein. The major pathological feature found in Huntington's disease neurons is the presence of detergent-insoluble ubiquitinated inclusion bodies composed of the huntingtin protein. However, the mechanisms that underlie inclusion body formation, and the precise relationship betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 20  شماره 

صفحات  -

تاریخ انتشار 1999